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EFFECTS OF FLUID INERTIA AND TURBULENCE ON FORCE
COEFFICIENTS FOR SQUEEZE FILM DAMPERS™®

Luis San Andrés and John M. Vance
Texas A&M University
College Station, Texas 77843

The effects of fluid inertia and turbulence on the force coefficients of
squeeze film dampers are investigated analytically. Both the convective and the
temporal terms are included in the analysis of inertia effects. The analysis of
turbulence is based on friction coefficients currently found in the literature for
Poiseuille flow.

The effect of fluid inertia on the magnitude of the radial direct inertia
coefficient (i.e. to produce an apparent "added mass" at small eccentricity ratios,
due to the temporal terms) is found to be completely reversed at large eccentricity
ratios. The reversal is due entirely to the inclusion of the convective inertia
terms in the analysis.

Turbulence is found to produce a large effect on the direct damping coefficient
at high eccentricity ratios. TFor the long or sealed squeeze film damper at high
eccentricity ratios, the damping prediction with turbulence 1nc1uded is an order of
magnitude higher than the laminar solution.

NOMENCLATURE
a = inner cylinder radius
3;'= -g = dimensionless journal center radial acceleration
b = outer cylinder radius
re® Cee T dimensionless damping coefficients in (r,t) directions due to tangential
velocity Vt
r— 3
= 1 1 1 — * L
ct® Cet damping coefficients (Crt’ Ctt) pkL/$§
rr’ Dtr = dimensionless inertia coefficients in (r,t) direction due to normal
acceleration a
—— = 3
= i ici = *
Drr’ Dtr inertia coefficients '(Drr’ Dtr) pkL/8 w
e = circular centered orbit radius
fr’ ft = dimensionless fluid film force in (r,t) direction

*This research was supported by the Turbomachinery Research Consortium at Texas ASM
University.
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fe, f = inertial wall shear stress functions

£

1 + ec6: dimensionless film thickness

m
]

=g
It

béH

film thickness

199’ Ieg, IEE = momentum integrals over the film thickness

k = geometry parameter = (L/b)2 for short SFD assumption, 1 for others
ke, kg = parameters depending on the nature of the flow

L = squeeze film damper length

P = pressure

D= pG%(kwLO = dimensionless pressure

9 g qg = dimensionless local flow rates in (8,&) direction

Re =<»62b2/v = squeeze Reynolds number

b

Rep = %E [(qe+H)2 + (L/b q£)2] = Poiseunille flow Reynolds number
u = fluid relative velocity along lubricant film

u#* = absolute fluid velocity along lubricant film = ut+bw
u = u/bw: dimensionless fluid velocity

Gﬁ i//;¥ﬁdn= mean fluid velocity along lubricant film

v = fluid wvelocity across lubricant film

v = v/bSw = dimensionless fluid velocity

V; = g = dimensionless journal center tangential velocity
W = fluid velocity in the axial direction

w = w/Lw = dimensionless axial velocity

;m =/lﬁdn = mean fluid velocity in af:ial direction

w = fgequency of damper motion

t = time

(x,¥,2) = moving coordinate system

(%,y¥,2z)* = fixed coordinate system
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Oy alysly = coefficients eventually depending on Re for turbulent motion

9H/96 = film thickness gradient along circumferential direction

Y =

T = T(Gﬁz) = dimensionless inertia function for long SFD assumption
§ = (b-a)/b = clearance ratio “

€ = ¢/b8 = dimensionless circular orbit radius, eccentficity radius
(6,n,%) = dimensionless coordinates = (x/b, y/h, z/L)

Afen, Afgn = wall shear stress difference in (0,£) direction

P = fluid density

" = fluid viscosity

v = /P = kinematic viscosity

T = tw = dimensionless time

Subscripts:

o = inertialess or purely viscous

i = inertial

INTRODUCTION

Squeeze film dampers (SFD) are designed to have a stabilizing effect on the
rotordynamics of turbomachinery. This has generally been accomplished by using the
Reynolds effect in a thin oil film around a bearing to produce a predictable
damping coefficient. The increase in size and speed of modern turbomachinery using
light viscosity oils has brought the need to include fluid inertia effects in the
design analysis. Sparked by the recent pioneering work of Tichy [1-4], researchers
are now extending the lubrication theory into the range where the Reynolds (slow
flow) assumption is no longer applicable.

At least for some simple geometries and motions, the fluid inertia effects
have been shown to be quite significant.

To the rotordynamicist fluid film forces and dynamic coefficients are more
important than velocity or pressure fields. Analytical [2,7] and numerical [5,6]
approaches have been developed for calculating the damping and inertia coefficients,
assuming motions of small amplitude o about an equilibrium point. 1In this case,
it can be shown that the convective }nertial terms may be neglected in the equations
of motion, since they are of order o while the temporal terms are of order a. 1In
all these analyses, the trend of the damping and inertia coefficients is to increase
as the static eccentricity ratio increases, a fact that has been shown to be true
in practice.
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However, for large excursions of the journal center about its centered position
the full inertial term should be retained in the momentum equations. .The temptation
to neglect convective terms in order to simplify and linearize the problem is no
longer justifiable even for very simple cases such as the long or short bearing
solutions. For example, reference [9] recently presented numerical calculations for
the dynamic coefficients of an SFD performing circular orbits (CCO) about the center
of the bearing housing. Using the same approach as in [5], the convective inertia
effects were neglected, so the coefficients have the characteristic form described
above. This behavior of the fluid film forces will be shown to be in error even for
moderate eccentricities and totally incorrect at large orbit amplitudes. Furthermore,
in reference [9] the direct damping and inertia coefficients for the cavitated SFD
were found to be one half the value of the full film case and independent of the
inertia parameters of the fluid. This appears unreasonable since if cavitation is
allowed, the extent of the region where the film is broken will be influenced by the
magnitude of the inertial forces. Our purpose in the present analysis will be to
determine the dynamic coefficients taking into account the full inertial terms for
simple geometries in order to understand better the action of viscous and inertial
forces in an SFD.

The inclusion of inertia complicates the problem in a SFD, and turbulence
effects make the problem even more involved. Unlike the journal bearing case where
a considerable amount of analytical and experimental work has been done, turbulence
in squeeze film dampers remains rather obscure due to the lack of experimental data
or a good understanding of the mechanics of squeezing flows. Nelson [11] used the
empirical friction coefficient for pure Poiseuille flows in an attempt to include
turbulent effects for the long SFD case. No satisfactory results were obtained
since the fluid apparent viscocity was used to calculate the empirical friction
factor for the flow.

Tichy [4] suggests that turbulent flow in SFD's will occur at higher Reynolds
numbers than for Poiseuille flows, i.e. Rep > 2000. This assertion seems reasonable
since the velocity field in a SFD is constantly changing and adjusts itself to the
normal motion of the boundary, thus making the flow more stable. It also seems
reasonable that transition from laminar to turbulent regions should be smooth in
order to satisfy continuity of the flow. All these considerations make the problem
more untractable and point out the urgent need of experimental data. In the mean-
time, it will prove helpful to use the empirical correlations currently found in
the literature and thus obtain upper bounds for the forces and dynamic coefficients
when turbulence is present in the flow.

STATEMENT OF THE PROBLEM

Figure 1 shows the geometry of the SFD system. The equations of motion for
the flow in the annular region between a whirling nonrotating inner cylinder and
its bearing housing are stated in a moving coordinate frame. Appendix A contains
the details of the integration of the motion equations across the lubricant film,
to finally obtain in dimensionless form:

3 3

Re 17— 1

£ — e 2P
26 Teo T ¢ Ter! Hk 5g + Atg, )
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8 3 _ 2 3p
Re |33 1:6g + 5% e Hk (b/L) T mgn 2)

? 3 _
36 99 T g 4 =0 (3)

This system of equations must be solved with appropriate boundary conditions
for the flow rates (q,, q,) and the pressure p. Analytical solutions to the problem
are extremely difficult sfnce the exact form of the wall shear stress difference
(ATen’ AT, ) is unknown and some assumption regarding their functional form becomes
necessary. Presumably, the problem may be solved numerically on a computer with its
full tridimensional complexity, but such an effort may prove to be unnecessarily
costly or even impractical.

As a first approximation to a practical solution of the problem, we assume that
for the laminar region, and even in the presence of turbulent effects, the shear
stresses at the walls may be written as:

= _ (q,+H)
Aten = ke 62 .+ Re fe (4a)
H
e
A = -k, =2+ Re £
Tgn kg Hz e £ (4b)
The approximate form of the functions k f and £f_ will be discussed later

in the analysis. Note also that in equatlons (4§ we have iAcluded an explicit
contribution of inertia to the wall shear stress difference.

Once a solution to the system of equations (1) to (3) has been obtained the
fluid film forces acting on the inner cylinder are calculated by integration of
the pressure distribution over the flow region. For rotordynamics applications,
the forces are expressed in terms of damping and inertia coefficients. Let (fr’f )
be the radial (along the centerline of both cylinders) and tangential dimensionless
~fluid film forces, and given by:

fr = /;/; cos 6 dR Crt N Drr a_ (5a)

R

£, =[p sin 6 dR e V. -D_ a (5b)

= {0<8<2r, 0<g<l}

1

I
<|

1

Il
i
Q

In equations (5), V¢, a, are the dimensionless journal center tangential

velocity and radial accelerat1on, respectively; and (C.., C..), (Drr’ Di,) are the
dimensionless damping and inertia coefficients. The dlmen31ona1 counterparts of

these coefficients are given by the relations:
- BKL = ukL
3

] D..-_-"_B (6)

C.. ..
ij ij . 7ij $3. ij
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Qur interest is to obtain approximate solutions to the uncavitated case, and
present the dynamic coefficients with inertia and turbulence effects accounted for
in the flow. This is a necessary step preliminary to any more refined analysis,
since it will contribute to a better understanding of the problem. We will treat
the laminar and turbulent solutions for the long and short SFD's separately. No
cavitation is considered in the: flow region. This last assumption is unrealistic
for some cases, but permits us to do a first treatment of the fluid film forces
with inertia and turbulence included, and will be accurate for high supply pressures.
Furthermore, the direct effects of fluid inertia and turbulence will be isolated
from the indirect effect caused by changes in the region of cavitation.

LAMINAR FLOW SOLUTIONS

Long Bearing Assumption

In this section we assume that the cylinders are infinite in extent, or that
very tight end seals are placed at the ends of the SFD, or that the axial flow g

is negligible. We are left with the equation: 3
qq = umH )
. -k
o _ )
56 - 3 (4t (8)
H
oD, £
—i_ X . T2y 4.8
56 " asm L/ F 350y ul 4y (%2)

P =P, + Re 1

Here we have divided the pressure into two parts so that E&_contains explicitly the
influence of inertia.

For small Reynolds numbers, Re<l, Brindley [7] and the first author [10] have
found that k., = 12 as in the usual lubrication approximation, and that the inertial
pressure gragient is given by:

a}:’i

_i_ Y = -2
T 35H[6~1—6um+54 um] (9b)

For large Reynolds numbers, assuming that the flow remains stable and laminar,
the inviscid pressure gradient is given as:

p.
i_y—2
30 H .um | (9¢)

Equation (9c¢) is different from the result presented by Tichy in [4],
apparently due to an error in the boundary conditions used for the inviscid flow
region.
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For both extreme values of the inertial parameter Re, the dimensionless flow
rate g is unaffected by inertia and is equal to:

2
2 -1
(2+7)
In order to make a quantitative comparison of equations (9a-9c) we let:
9D,
B 1 gl
T = Y 98 I'(um ) (1)

be a function that indicates the magnitude of the inertia term in the pressure
equation.

Figure 2 shows equations (9a-9c); curve A represents (9a) with £_ =0, a,=1.2,
. . ] 1
curves B & C, equation (9b-c), respectively.

A brief look at figure 2 shows the surprisingly similar behavior of the flow
for the large range of Re considered. The actual value of T for moderate Reynolds
numbers will lie between curves A and B; curve F shows the best fitting line
between the A and B curves from which we select the inertial contribution to the
wall shear stress difference as:

2
4 g
fo =351 2 (12)

Thus, we assume that for moderate Reynolds numbers, the wall shear stress
difference is approximately given by:

(qe+H)

ATen = -12 —“;;?—” + Re

q 2
¢
- (13)

%jb
w,
ue]

With these considerations, the pressure field for the flow can be determined,
and from this, the dynamic coefficients. As previously stated, only the uncavitated
SFD is treated here so that the effect of inertia on the fluid film forces can be
‘clearly isolated. Otherwise, the extent of the cavitated region is dependent on
the Reynolds number and the dynamic coefficients must be determined numerically for
each change in the inertia parameter. '

Integration of equations (8) and (9), subject to the continuity condition for
the pressure field, is relatively easy and is given in [8]. The dynamic coefficient
for the long SFD with laminar flow come to be:

= - 247
rt tr tt (2+32)(1_€2)2

Note that the direct damping coefficient C, _ is the same as in the inertialess
solution. Analytical expressions for the direcEtinertia coefficient D__ are given
in Table I. Figure 3 shows a comparison of this coefficient for the i fferent
cases considered. The behavior of the inertia coefficient D__ divided by Re is
surprisingly similar for the large range of Reynolds number Considered. The largest
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difference occurs at small and large eccentricities but is never more than 20%,
(between Re=0 and Re=» ). The rapid decrease of the inertia coefficient as the
eccentricity ratio grows larger appears to contradict the recent results presented
in [9]. The reason for the discrepancy is that in the MTI study only temporal
acceleration effects were accounted for in the equation of motion while here both
the convective and temporal inertia terms are retained. The upper dashed curve in
figure 3 shows the inertia coefficient when only the temporal effects are
included. The coefficient grows rapidly and even goes to infinity as the orbit
size approaches the radial clearance.

Short Bearing Assumption

In this section we assume that the SFD has small L/D ratios, the ends are
open to the atmosphere, and for simplicity we also assume that no high externally
induced axial flow is present in the damper. The reason for the latter assumption
is to avoid pressure boundary conditions which would require the explicit presence of
the inertial parameter Re. As is current practice for the short journal bearing
analysis, the circumferential flow is assumed to be negligible. We set k=(L/b)
in egs. (1) to (3) and get the following set of equations:

qe = ~H (15)
9q
& -
3E Y (16)
H 9p q
=2 =12 = (17)
- H
H BE: 9q o
. & _ 33 (42
52 - fetie T E ar () (18a)

The axial inertial pressure gradient obtained for small Re using a regular
perturbation solution in Re is given by Tichy (3) as:

H 3p, 3, 5 )

l— ——— ey — —
e - 1235 " 3smoar (9 ) (18b)

Assuming the flow remains stable and laminar, for large Re the inviscid
pressure gradient is given by:

H 9p, aq
_i__&g_ 13 . 2
52 " 98 ~Hot g ) (18c)

From a quantitative comparison of equation (18a-c), for moderate Reynolds
numbers we select the inertial contribution to the wall shear stress difference
to be:

9q
.2 3 2 1 &
fe= - 359t @) Y10 56 (19)
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Thus, we assume that the wall shear stress difference for the short SFD
approximation is given by:

q 3q
- £ __2 o 2 1l g
Aen =~ kg 2 35H 9¢ (4. + 15 58 (20)

With these considerations, equations (17) and (18a-c) are integrated to obtain
the pressure field. For the full film assumption, the dynamic coefficients come to
be:

=70 = T =
Cre = Dtr =0 Cet 2 3/2 (21)
(1-€7)

Note that the direct damping coefficient C_, is the same as in the inertialess
solution. Analytical expressions for the direcEtinertia coefficient D__ are
given in Table II. For the different cases considered, figure 4 shows" fhe inertia
coefficient D divided by Re as a function of the eccentricity. As in the long
SFD case, the"form of the inertia coefficient is surprisingly similar for the large
range of squeeze Reynolds numbers considered. Note the tremendous influence that
the convective inertial terms have on the coefficient when compared to the dashed
curve which is based only in the inclusion of temporal effects on the equation of
motion. Thus, analyses based on small perturbation about an equilibrium point are
in large error compared to the exact solution, if the orbit is large.

TURBULENT FLOW SOLUTIONS

The inclusion of turbulence effects into the flow complicates the problem
enormously. Although the mechanism of turbulence for fully developed Couette and
Poiseuille flows has been studied extensively, both analytically and experimentally,
and many contributions to the analysis of flow in narrow channels have been given in
the past years; the mechanics of squeezing flows are far more complicated. The
subject still remains obscure due to the complete absence of theoretical-empirical
formulation and the lack of experimental results.

Undaunted, we assume that the coefficients ke & kg to be used in turbulent flow
in a SFD are given by:

kg = k6 = 12 + 0.005 Rep (22)
where
2 2 2 s
Rep = 55 [zt + @/b)? 4] (23)

is the Poiseuille Reynolds number currently found in the literature.

Relation (22) was obtained as the best fitting curve between the experimental
correlation given by Hirs (12) and the analytical results based on the mixing length
theory given by Elrod and Ng (13). Here we have assumed that the transition from
the laminar to turbulent regions in a SFD must be smooth in order to insure
continuity of the flow.
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The assumed expressions may be far away from the actual expressions which
should be obtained from experimental results. However, we have chosen them in the
absence of better empirical formulations, and the results obtained will prove to be
upper bounds of the actual forces and dynamic coefficients.

Long Journal-Bearing Assumption

As in section 3.a, the axial flow is neglected and the pressure gradient field
is given by:

- (H+q,) q 2

9 _ _ Re — 8 ,Rey 8

Y (12 + 0.005 3 1H + qel) H3 + 35 4 [~7+46 HZ ] 24)
qe = qe (e’ Re’s) (25)

Note that we have assumed that £, given in (12) prevails even in the turbulent
regime. A very simple computer code was written to obtain the pressure field. Using
numerical integration, the dynamic coefficients were calculated for an uncavitated
SFD with a clearance ratio & = 0.001.

Figure 5 shows the direct damping coefficient C_, as a function of the
eccentricity ratio for different Re, and figure 6 depicts the same coefficient as
a function of the Reynolds number for different orbit radius e. From the figures
it is evident that turbulence has a large effect on the damping coefficient, and
consequently on the tangential force. This is due to the increase in the apparent
viscocity of the fluid as the inertia parameter grows.

Figure 7 shows the direct inertia coefficient D__/Re for various orbit
radius, the pattern of the curves is the same as in %Egure 3 for moderate Reynolds
numbers. It is clearly seen that the effect of turbulence is to increase the
coefficient, especially at large whirling orbits, this is due to the increase in
flow rate qg as € grows in order to satisfy continuity of the pressure field.

_A comparison of the results given in figures 5 and 7 shows that the ratio

/C is less than 1/10 for all eccentricities and Reynolds numbers considered,
this may be an important result since it implies that the tangential force will be
larger than the purely inertial radial force.

Short Journal Bearing Assumption

For the short SFD assumption, the axial pressure gradient equation comes to be:

= q aq
5 _ Re £, Re (11 “%¢ 44 3 2
—P—ag = ~(1240.005% (L/b) lael) = + &= g 55 = 357 5% 9¢ (26)

qu
5 S Y (27)

Assuming that there is no high axial flow externally induced into the SFD, the
flow q, remains unchanged from the inertialess solution. Equations (26) and (27)
are amgnable of closed form integration, the details of the same are omitted for
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brevity; it is found that the direct inertia coefficient D__ is the same as given in
. rr
equation (2) of Table 2.

Figure 8 shows the direct damping coefficient C as a function of the eccentri-
city ratio for different values of the squeeze Reynoi&s number Re, and figure 9
shows the same coefficient as a function of Re for various values of the orbit
radius €. All calculations were made for an uncavitated SFD with a clearance ratio
of §=0.001, and a L/D ratio equal to 0.25. From the figures a significant influence
of turbulence on the damping coefficient is seen. As expected, the larger the
Reynolds number, the larger the dynamic coefficient and consequently the tangential
force increases proportionally. Once again, this effect is due to the increase in
the apparent viscocity of the fluid as the inertia parameter grows.

SUMMARY

The present paper has considered the influence of inertia and turbulence on the
flow in the annular region between a whirling damper journal, describing circular
centered orbits, and its bearing. After an analysis of the fluid-flow equation for
the problem, the usual assumptions considering the length of the SFD are made to
obtain the classical long and short journal bearing approximations.

The region of flow Was assumed to be continuous, i.e. no cavitation was
allowed in the fluid. This allowed a clear analysis of the effect of inertia and
turbulence on the fluid film forces and the dynamic coefficients. The laminar
solution showed the importance of the inclusion of convective inertia terms in the
equations of motion. The resulting reversal of the "added mass effect' makes it
clear that numerical or analytical approaches that calculate the dynamic coefficients
for large motion amplitudes in base to small perturbations about an equilibrium
point may be largely in error.

In the absence of empirical coefficients for the turbulent motion in squeezing
flows, a friction coefficient based on the Poiseuille analysis of Hirs and Elrod and
Ng was used. This may be modified by experimental results in the future, since
_the transition from laminar to turbulent motion may turn out to appear at larger
Reynolds numbers than here considered. As suggested in reference (4), the values
here presented should be considered as upper bounds for the actual dynamic coeffi-
cients and as qualitative indicators of the influence of turbulence on the flow.

If these bounds are even approached by the real case, turbulence will be found to
have a large effect on the direct damping coefficient for squeeze film dampers.

The present analysis should prove to be stepping stones for future developments

that will consider SFD's of finite extent and also the influence of inertia in the
boundary conditions of the flow.
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TABLE I.

Long Squeeze Film Damper

Re rr/Re
small 12
Re<<l 35T [P2(1+26b) + 9T1]
large
Re-s-so0 Zﬂfl
moderate R 14
£,=0" 35" [Ty + 6ry]
moderate R 14
f from —r [T, + 6.5714285 T, 1]
35 2 1
eqn. (12)
Definitions:
2. 2,7t
B = (l1-¢7) , b= (2+€7)
(1.1)
_ 2 _ ra 2
r, =26° , T, = (B-1)/e
For temporal effects only:
= =24 (1.6)
D /Re =—5m T,
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TABLE II. Direct Imefttia Coefficient B;r
for the Short Squeeze Film Damper

D . - (2.1
Drr/Re = -T [C; +C, (B-1)]
Re C1 C2
small 1.2 102/35 (2.3)
Re<<1
large 1.0 2.0 (2.4)
Re>>1
moderate R 1.0 2.4 (2.5)
£ =0
£
moderate R 1.1 2(1+2/35) (2.6)
f. from
eén. (19)
Definitions:
L ,
(2.1) g = (1-¢%) , 1 =21 (2.2)
2
6Re

Temporal Effects Only:

cl =1.2 , c2 =0 (2.7)
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APPENDIX A

Coordinate System and Equations of Motion

Consider two circular cylinders of radii a and b (>a) and assume that the
center of the smaller cylinder rotates with constant angular velocity wiin a circle
of radius e about the center of the larger cne. The condition that the cylinders
do not touch is

0<ex<1 (A.1)
b-a _.__e
a (b-a)

where °§ = <<1 , € (A.2)

Here § and ¢ are the clearance and eccentricity ratios, respectively.

The first characteristic of the geometry of lubricant films that permits
simplicication of the problem is that the thickness of the lubricant film, h, is
very small compared to its length or to its radius of curvature. As consequences
of this the following assumptions are made (8).

1) The effects of the curvature of the film are negligible.

2) The variation of the pressure across the film is small and may be neglected.

3) The rate of change of any velocity component along the film is small when
compared to the rate of change of this same velocity component across the
film and can be neglected.

In accordance with assumpgion (1), we can prescribe a fixed orthogonal
cartesian coordinate frame {x*} ., . in the plane of the lubricant film. See
figure 1, where the y* axis is iﬁ_%he d%rection of the minimum film dimension. A
moving orthogon§l coordinate frame {x,} ., , translating with velocity T=bw with
respect to {x*}”, . and its x axis pe%pen&lcular to the line joining the centers
of both cylinéeré_ls introduced, ang it can be shown that the flow will be steady
to an observer moving with the {xi},i=1_frame.

The following dimensionless coordinates are introduced:

X Z ‘
= e— T e— — -
] 5 L > 0 %-, T tw (A.3)
where h = b8H(8), H(B) = 1 + ecosd (A.4)

is the lubricant film thickness at location 0.
Dimensionless velocity components in the two coordinate frames are defined as

—_ * — v — —
u*=ll——- *:———:v’w*=——=w,u=——- (A.S)

The pressure and the shear stresses are made dimensionless according to

379



2 T T
- {p-pa)s” -1 - XY -
wv/p ks Yon T wn/s * Ten wu/S (b/L) (A-6)

and k=1 for long bearing assumption

k = (L/b)2 for short bearing assumption A.7

With these considerations, the momentum and continuity equations for the
tridimensional flow, expressed in the moving coordinate system are

Re ;%%—2-+%g—n[’ﬁx?—nﬁz]+Y§2+9—(uw)$ =-k—g-%+%-g— Ton
gﬁl__ e '}__zz_a_ila_
Re 2% +E o [wv-nywu] + 7+t 5g (W) = -k @) 8g+Han'Tgn (A.9)
%+%{-g—n[§7—ny§]+;§“+g“g—o (A.10)
where v = 8H/96 and
Re = %bz (A.11)
is the squeeze Reynolds number.
The boundary conditions appropriate for the flow are
at n=0 :%—1, E%;QO _
n=1 u=-1, v=-y, w=0

(Note that we have neglected the velocity component due to the motion of the
surface n=1 in the 98.direction since it is of order §).

(A.8)

(A.12)

The pressure must satisfy appropriate conditions at the ends of the SFD and

must be single-valued and periodic in the circumferential direction, i.e.

<§ J—de =0 (A.13)

Equations (A.8) to (A.10) are integrated across the film to obtain

3 I 9 _ . 9P
Regae 66 + Y Ieg$ kH Y + Aren (A.14)
9 a_ - - 2 3p
Regae Ieg + 5E 155} kH (b/L) SE + ATE (A.15)
3 3 _
26 4ot or g =0

where 4, and qg are the dimensionless local flow rates in the 6 and £ directions,
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H}éfﬁ&n

qe = 9 = H udl (A. 178.)
qg = Hso wdn = H v (A.17b)
and the Iij's are defined as:
1.
rij = (W 5 d A.18
H 0" % n (&.18)

To proceeds further assumptions about the velocity distribution should be
made. To this end we assume that the shape of the velocity field is not greatly
affected by inertia, and we let the velocity momentum integrals in (A.18) be
given by

_ 2
Iee =0y qe/H + 0.4 4 + 0.2 H
Ieg = a, qqu/H + 0.2 qE (A.19)
2
I = H
gg = %3 9/

- For the type of flow considered, the range of variation of the coefficients
{ai} i=1 is between 1.2 and 1.0 for small Reynolds numbers and large Reynolds

numbers, respectively; thus it may be assumed that averaged values will suffice to
obtain meaningful results. '
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Figure 1. - Squeeze film damper geometry and coordinate systems.
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Figure 2. — Function I‘(E:l) indicating magnitude of inertia term in
pPressure equation for infinitely long squeeze film damper.
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from Table 1

Ar Resl , egn. (1.2 //

B: Re>>1, eqn. (1.3

C: moderate Re,eqn. (1. 4) ///

Dt moderata Re, egn. (1.5}

ST E: temporal effects only ///
eqn(l. 6)

Direct inertia coefficient, Drr/Re

_1 1 1 g L
£ 1 L] L

0 .2 .4 .6 .8 1

Eccentricity, orbit radius

Figure 3. - Direct inertia coefficient Drr/Re for circular centered orbits
as function of eccentricity - long squeeze film damper assumption; laminar
flow solution.
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Direct inertia coefficient, Drr/Re

.8
from Table 2 /

A: Resl , egn. 2.3
B: Re>>l, eqn (2.4

-7 T 1 moderate Re, eqn. 2.3 /
D: modarcte Re, eqn. (2.8)
Er temporal effects only /

eqn. 77
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- 1 i
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—2 t + ¢ g t } f :

Eccentricity, orbit radius:

Figure 4., — Direct inertia coefficient Drr/Re for circular centered orbits
as function of eccentricity - short squeeze film damper assumption; laminar

flow solution.
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Direct damping coefficient, Ciq

10 '

Eccentricity, orbit radius

Figure 5. - Direct damping coefficient Dy, for circular centered orbits as
function of eccentricity - long squeeze film damper assumption; turbulent
motion solution.
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Figure 6. — Direct damping coefficient Cr¢ for circular centered orbit as
function of Reynolds number - long squeeze film damper assumption; turbulent
motion solution. '

387



Direct inertia coefficient, D,p/Re

N
g
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Eccentricity, orbit radius
Figure 7. - Direct inertia coefficient Drr/Re for circular centered orbits
as function of eccentricity - long squeeze film damper assumption; turbulent

flow solution.
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Figure 8. - Direct damping coefficient C¢y for circular centered orbits as
function of eccentricity = short squeeze film damper assumption; L/D=0.25;
turbulent motion solution.
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Figure 9. - Direct damping coefficient Cpy for circular centered orbits as
function of Reynolds number - short squeeze film damper assumption;

L/D=0.25; turbulent motion solution.
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